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Europe's transformation to a digitalised and sustainable economy requires a secure supply of rare metals 
such as lithium and cobalt. Diversifying sources of supply is the order of the day. However, information about 
new raw material deposits is still driven by chance and patchy. This cepInput argues that using AI in 
reconnaissance and surveillance will improve the information base and should therefore be encouraged.  

 The use of AI in resource exploration significantly increases cost efficiency and search speed and may 
reduce the consequential social costs of mining. 

 The promotion of AI-based exploration technologies should therefore be an essential component of the 
EU's forthcoming Critical Raw Materials Act. At the same time, the EU data regulations must ensure that 
high-quality data is used for training the underlying systems, and that interdependency effects are 
monitored by "humans in the loop". 

 In the interests of sustainability, algorithms should also evaluate information on the likely environmental 
effects of commercial exploitation. In addition, the funded technologies should be used to build a recycling 
economy for critical metals in Europe.  
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1 Motivation 

Beneath the earth's surface are a multitude of mineral resources, many of which may be of use in the 

future. Some minerals have only been mined in small quantities in the past but are becoming 

increasingly crucial in the future. These include the rare metals needed for the production of batteries 

(lithium, cobalt), wind turbines (rare earths) and electronic displays (indium). Such minerals are 

indispensable for Europe's transformation to a digitalised and sustainable economy. Currently, 

however, extraction and smelting are concentrated in a few non-EU countries such as China, Australia 

and South Africa. Procuring these minerals is, therefore, subject to multiple risks with regard to price 

development, security of supply and environmental impact.1 This supply structure also creates 

strategic dependencies for Europe, which must be critically evaluated in the current geopolitical 

context. 

One possible way out is to explore new raw material deposits inside or outside the EU. So far, however, 

there has also been a clear global divide in exploration activities: Canada, Australia, the United States 

and China are perceived as the most critical regions due to their size and importance for the mining 

industry, with more than half of the global exploration budget for metals in 2021 being assigned to 

these regions.2 So far, in terms of volume, Europe has not played a significant role in the regional 

evaluations and is not even recorded separately as a region in the available analyses. Although there 

have recently been isolated large-scale discoveries in Europe, in Sweden3 and Norway4, this has yet to 

be backed up by a systematic exploration strategy. Recent price trends have further impeded 

incentive: The comparatively low metal prices of recent years, which bottomed out in 2016, caused 

the capital markets for metals to dry up and forced companies to focus on safer but less rewarding 

work near existing mines. The resulting decline in discoveries has become an increasingly acute threat 

to supply security in the face of soaring demand for battery metals such as lithium and cobalt.  

One way to increase the yield may be an increased focus on so-called "greenfield" exploration, i.e. the 

exploration of previously largely unexplored geological terrain away from known deposits.5 However, 

the high level of uncertainty regarding the results of conventional exploration methods - combined 

with considerable capital expenditure - represents a major incentive barrier. Better analytical methods 

are therefore needed so that the chances of success of an exploration can be assessed in advance. This 

raises the question of whether exploration and exploitation processes can be optimised using the 

latest artificial intelligence (AI) methods, which have already revolutionised many other industries, 

such as mobility and e-commerce.6  

This cepInput analyses the potential and the requirements for using AI in the exploration and 

monitoring of critical metal deposits. Section 2 looks at the current information deficits regarding the 

existence of resources and reserves, both in terms of geological deposits and the wealth of resources 

contained in end products that is currently lying dormant. Section 3 describes in detail how new AI 

approaches could make the discovery and extraction of critical minerals more efficient in the future 

 
1  Wolf, A. (2022). Europe's handling of the raw materials of the future. cepInput No.11/2022. 
2  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 13. 
3 CNBC (2023). Sweden finds Europe's largest deposit of rare earth metals, which could become 'more important than oil 

and gas'. 
4 CNN (2023). Norway discovers huge trove of metals, minerals and rare earths on its seabed.  
5  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 13. 
6  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 

Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243 

https://www.cnbc.com/2023/01/13/sweden-mining-company-lkap-finds-big-deposit-of-rare-earth-metals.html
https://www.cnbc.com/2023/01/13/sweden-mining-company-lkap-finds-big-deposit-of-rare-earth-metals.html
https://edition.cnn.com/2023/01/30/business/norway-minerals-seabed-deep-sea-mining-climate-intl/index.html
https://www.researchgate.net/publication/323243243
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and provides several concrete examples from the non-European start-up scene whose valuable 

experience should now be transferred to Europe. At the same time, this section also points out the 

technical and regulatory imponderables that are currently still in place and goes on to analyse, from 

an economic perspective, the extent to which AI-based methods should be eligible for support. Section 

4 discusses the role of AI in European raw material policy to date and substantiates its eligibility for 

support. On this basis, in Section 5, we conclude by formulating some concrete policy 

recommendations for the European Commission (EU) that may help to ensure that the continent does 

not miss the shift towards machine-driven mining and exploration. Section 6 provides a summary of 

the core findings. 

2 Information deficits regarding raw material deposits 

2.1 Geological deposits 

Publicly accessible primary data on the geographical distribution of raw material deposits are primarily 

provided by national statistical authorities. However, the recording criteria and demarcations are not 

standardised internationally. The U.S. Geological Survey (USGS) has established itself as a source for 

country comparisons, incorporating information from authorities in other countries as well as its own 

research results from non-official sources. The USGS distinguishes between reserves and resources. 

Reserves are defined by the USGS as identified deposits that can be economically extracted under 

current conditions. Resources also include identified deposits that are not currently economic and 

deposits that are assumed to exist based on geological indicators.7 The current extent of a country's 

raw material reserves, therefore, depends not only on the physical availability of the deposits but also 

on the state of technical development and the price situation on the raw material markets. The total 

stock of resources is also subject to significant fluctuations due to exploration activities as well as the 

correction of estimates. Information sources relating to raw material deposits in the EU area are also 

patchy and sometimes inconsistent.8 This also applies to deposits in marine areas that Member States 

have licences to explore.9  

Geologists have traditionally searched for mineral deposits by painstakingly collecting field data and 

then analysing it by hand. Conventional methods thus rely exclusively on human interpretation but 

also often fail. Although billions of dollars are invested in exploration, only a handful of new deposits 

are discovered each year: Miners commonly state that only one out of about a hundred exploratory 

wells brings anything to light.10 The number of discoveries has already been declining since the turn of 

the millennium.11 Lack of investment in new mines also indicates that the conventional approach will 

not be able to cope with the demand that has been proliferating in recent years, particularly as a result 

of the need for a climate-neutral transformation of the global economy. The indexed metal price is 

 
7  USGS (2020). Appendices - Mineral Commodity Summaries 2020. US Geological Survey. 

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-appendixes.pdf. 
8  Lewicka, E., Guzik, K., & Galos, K. (2021). On the possibilities of critical raw materials production from the EU's primary 

sources. Resources, 10(5), S. 50. 
9  Lusty, P. A., & Murton, B. J. (2018). Deep-ocean mineral deposits: metal resources and windows into earth processes. 

Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 14(5), 301-306. 
10  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 

https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/ 
11  For figures see: Davies, S. (2020). Assessment of Methodologies to Predict Potential Mineral Endowment on Entering an 

Immature Exploration Space, using the Western Australian Sandstone Orogenic Gold District as a Natural Laboratory. 
Doctoral Thesis, The University of Western Australia. 

 

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-appendixes.pdf
https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/
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now back above its 2012 peak, and exploration budgets have increased by 35% from $8.35 billion in 

2020 to $11.24 billion in 2021. Nevertheless, the 2021 global exploration budget is only 50% of the 

2012 peak.12 Significantly, the share of greenfield exploration in the total budget is close to a record 

low at 26%, down from 41% in 2007.13 Drilling’s high error rate and low chance of success in the face 

of growing demand and inadequate funds, together mean that more efficient exploration methods can 

- and must - play an essential role in the future if the global community is to achieve its ambitious 

climate and digitalisation goals. 

2.2 Urban Mining 

The problems which exist in the mining of future raw materials have drawn attention to alternative 

sources. With increasing industrial use, the wealth of raw materials lying dormant in everyday products 

is becoming more and more attractive. The term "urban mining" describes strategies to make this 

treasure trove economically viable through waste management and reprocessing. The advantages of 

such so-called "anthropogenic" raw material deposits are apparent. They can be developed without 

the environmental risks associated with mining and are independent of price fluctuations and supply 

risks on the world markets.14 Moreover, anthropogenic deposits are concentrated in urban areas and 

thus principally near production facilities. The EU's dependence on a small number of producing 

countries would thus be reduced by increased mining in cities.  

At the same time, however, establishing the necessary recycling chains represents a significant 

technical and organisational challenge. As in conventional mining, the first requirement is to get an 

overview of the size of existing deposits. This is particularly difficult for future raw materials, which are 

often fixed inside durable consumer goods such as mobile phones. Since a large part of the life cycle 

takes place in the realm of the consumer, material flows and changes in local stocks are difficult to 

estimate. Constant changes in material intensity due to short innovation cycles further complicate the 

evaluation.15 Across Europe, however, the volumes are quite significant. The Urban Mine Platform 

made calculations to this effect in 2018. For example, it estimates the amount of lithium in European 

batteries at around 13,000 tonnes and the amount of cobalt at 24,000 tonnes. 16 However, the 

associated project has now come to an end and the data is no longer being updated. For assessing 

potential and effective management of secondary raw materials, continuously updated estimates 

would be needed with the highest possible geographical resolution. This applies even more to the AI 

assessment methods presented below. 

3 Possible contribution of AI 

3.1 Technical potential 

Data science and machine learning could significantly enhance the search for lucrative excavation sites 

in the future. Various research teams and exploratory start-ups are currently developing big data 

projections relying on geophysics and boreholes to reduce existing uncertainties about the resource 

 
12  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 5. 
13  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 12. 
14  Tercero, L., Rostek, L., Loibl, A. & Stijepic, D. (2020). The Promise and Limits of Urban Mining. Fraunhofer Institute for 

Systems and Innovation Research ISI. 
15  Federal Environment Agency (2022). Urban Mining. 
16  Urban Mine Platform (2018). Composition of Batteries. 

 

https://www.umweltbundesamt.de/themen/abfall-ressourcen/abfallwirtschaft/urban-mining#strategy-for-the-circular-economy-
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potential in many areas of the world. When assessing geological resources, conflicting factors must be 

evaluated to create a functioning decision model. Using AI-driven software in this context could 

accelerate the discovery of new ores and, at the same time, reduce costs. The first practical cases 

relating to oil fields, geothermal systems, contaminated sites and recharging groundwater already exist 

and provide a glimpse into the future.17 For example, data-driven estimation methods were recently 

used to assess the Sandstone greenstone belt in Western Australia; the projected undiscovered gold 

deposits can now be used to guide future exploration expenditure.18 In December 2022, the technology 

magazine Wired promised a soon-to-be-launched "marriage of cutting-edge artificial intelligence with 

one of mankind's oldest industries".19 

The basic building block for such a connection between AI and mining is the existence of machine-

readable data. Many mining or exploration companies have large amounts of historical data hiding 

evidence of mineralised systems. Unfortunately, much of this data is in an analogue, often poorly 

preserved state, requiring significant investment to digitise and validate. Important information for an 

AI-driven assessment of resources is contained, most notably on geological maps and in field reports. 

Extracting valuable and accurate information from these maps is a time-consuming and laborious 

process requiring much human labour. American experience shows that a typical data-driven 

assessment of a critical mineral takes about two years to produce.20 This is because only about 10% of 

geological maps are available as georeferenced images and, in turn, only about half of these are the 

fully digitalised vector files required for analysis (the rest are typically scanned images of paper maps). 

Due to these problems, researchers and companies are increasingly turning to alternative data sources 

that are easier to obtain and still provide relevant exploration forecasts. Today's standard of 

exploration generally involves direct exposure through drilling as well as indirect exposure through 

probing. Crucial technological advances have been made recently, particularly in geophysical surveying 

and hyperspectral drill core analysis, which significantly improve the technological possibilities for 

storing and processing rich data.21 Measuring instruments such as gravimeters, gravitational wave 

sensors and magnetometers are used to detect and record fluctuations in the gravitational and 

magnetic fields. The data thereby collected can then be examined to identify potentially valuable 

resource deposits, for example, by analysing the spectral density and time-frequency localisation of a 

signal. 

Finally, in the last ten years, it has become possible to bring this one-dimensional or two-dimensional 

data into the 3D domain. Since 1999, MiraGeoscience has pioneered the application of advanced 

geological modelling, 3D GIS technology and 4D multidisciplinary data management in the mining 

 
17  Scheidt, C., Li, L. &. Caers, J.K. (eds) (2018). Quantifying Uncertainty in Subsurface Systems. Hoboken, NJ, USA: Wiley. For 

a concise summary, see also: Caers, J.K. (2018). Quantifying uncertainty about Earth's resources. Eos (99). 
https://doi.org/10.1029/2018EO097471 

18  Davies, S. (2020). Assessment of Methodologies to Predict Potential Mineral Endowment on Entering an Immature 
Exploration Space, using the Western Australian Sandstone Orogenic Gold District as a Natural Laboratory. Doctoral Thesis, 
The University of Western Australia. 

19  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 
https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/. 

20  DARPA (2022). DARPA Announces Winners of AI for Critical Mineral Assessment Competition (Dec. 16, 2022). 
https://www.darpa.mil/news-events/2022-12-16 

21  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 
Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243. 

 

https://doi.org/10.1029/2018EO097471
https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/
https://www.darpa.mil/news-events/2022-12-16
https://www.researchgate.net/publication/323243243
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industry with the integrated Common Earth Model.22 The company provides the mining industry with 

modelling and data management solutions for mineral exploration and geotechnical hazard 

assessment. This is important because, in order for AI systems to predict where the most promising 

targets are located, it needs data that can be stored in a 3D space representing the cubic area in which 

targets are to be evaluated.23 Startups and mining companies are now increasingly using AI methods 

to effectively analyse these combined datasets and 3D models. The hope is that the algorithm can 

detect meaningful correlations that would not be apparent to a human. Below we give some 

interesting examples stemming from this new development. 

3.2 Practical examples 

The most promising player in the emerging field of AI and mining is KoBold Metals, a four-year-old 

start-up that, in collaboration with Stanford University and with support from Bill Gates and Jeff Bezos, 

has developed and now successfully deployed an AI-based system for finding potential mineral 

deposits. According to reports, KoBold's approach is based on a database that gathers information 

about the earth's crust from geological reports, soil samples, satellite imagery, academic research 

papers and handwritten field reports.24 This information - which amounts to about 30 million pages - 

is being digitised and standardised with the help of "Optical Character Recognition" to enable AI to 

identify geological patterns and other features of places where metals have been found in the past. 

The algorithms trained in this way will be able to find promising locations with similar patterns that 

have not yet been explored, and produce virtual maps indicating where target metals are likely to be 

found. KoBold is using this technology primarily to search for copper, cobalt, nickel, lithium and rare 

earths. How the underlying supervised learning of the AI system works is considered and explained in 

more detail in section 3.3. 

To give a concrete example: In remote parts of Quebec, KoBold Metals uses, among other things, a 

helicopter with a 35-metre-wide copper coil dangling from its belly,25 which sends electromagnetic 

waves into the earth generating currents in the rock. Electrical conductors send signals back to the 

receiver coil, indicating whether the scanned rock could contain valuable nickel and cobalt deposits. 

The helicopter covers around 160 kilometres per day and transmits the data to the KoBold scientists 

via satellite. They enter the new survey data directly into their database, combine it with existing 

observations and update their AI models so that they can model the geology of the region under 

investigation more effectively. Thus, with the help of AI-driven software, airborne survey plans can be 

adjusted on a daily basis and speed up the identification of promising places to drill. KoBold claims that 

using such technologies can increase the usual discovery rate by a factor of 20. 

As mentioned above, KoBold recently partnered with the Stanford Center for Earth Resources 

Forecasting (SCERF), whose methodological expertise was used to create an AI "decision agent" that 

can generate an exploration plan. This digital decision maker quantifies the uncertainty in KoBold's 

 
22  Mira Geoscience (2023). About us. https://mirageoscience.com/about-us/ 
23  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 

Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243, p. 4. 
24  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 

https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/. 
25  Stone, M. (2021). The big tech quest to find the metals needed for the energy overhaul. MIT Technology Review 

(11.08.2021). https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-
for-the-energy-overhaul/ 

 

https://mirageoscience.com/about-us/
https://www.researchgate.net/publication/323243243
https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/
https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-for-the-energy-overhaul/
https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-for-the-energy-overhaul/
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model results and, on this basis, designs a data collection plan to reduce this uncertainty sequentially. 

SCERF conducts research in the field of exploration, evaluation and development of earth resources, 

be it energy, water or minerals, and develops solutions ranging from data acquisition to decision 

analysis.26 It focuses on integrating spatial data, quantifying the uncertainty of geological systems and 

the added value of data sources for decision making. A look at the research results from the Center 

shows where the potential and the problems of this technology currently lie. 

The quantification of uncertainties is the unifying element in SCERF research, which is not surprising 

as it is the main issue in the predictive evaluation of deposits. When developing geological resources, 

decisions must be made on where and how to extract them, when to stop extraction and the 

environmental impacts of extraction.27 This is true for all the rare metals mentioned in the 

introduction, so these issues are also of utmost interest for any European efforts in the field (see 

section 4). As SCERF researchers show in various application areas, computer-aided analysis helps with 

this type of decision-making because it can propose concrete measures under conditions of 

uncertainty, based on specific observational data and a basic global understanding of subsurface 

systems – without, however, being able to fully predict their outcome. If AI systems are thus able to 

help optimise the exploration, evaluation and extraction of mineral resources, it could benefit many 

European mining regions. Geothermal energy, such as that used extensively in Iceland to generate 

electricity and heat buildings, is one such subsurface resource where quantifying uncertainty could 

facilitate decision-making. 

One example of recent progress in quantifying uncertainty in the mining sector is the research of David 

Zhen Yin, who is involved at SCERF as programme director of the Stanford Mineral X Initiative, where 

he leads research on the sustainable development of critical minerals for the energy transition.28 Based 

on so-called Bayesian Evidential Learning (BEL),29 which uses machine learning to find a direct 

relationship between predictor and target, his research aims to develop an automated framework for 

quantifying uncertainties in geological models for deposit evaluation. When new boreholes are "sunk" 

(i.e. vertical cavities are created for extraction), multiple components of the geological model must be 

updated jointly and automatically. Sinking is one of the riskiest mining operations and is a considerable 

challenge for the engineer employed.30 During the updating, the AI-driven system developed by Yin 

extends the direct forecasting to perform an automatic model uncertainty reduction by evaluating new 

well observations. In other words, geological analysis immediately becomes less error-prone without 

the need for conventional model rebuilding, which significantly reduces the time required and, at the 

same time, minimises any risks relating to the environment. 

The SCERF programme is funded by industrial members of the minerals and energy industries, as well 

as government agencies and the Stanford Doerr School of Sustainability in Groundwater and 

 
26  The following analysis refers to an evaluation of all SCERF projects that can be found on this page: SCERF (2023). Research. 

https://scerf.stanford.edu/research 
27  Caers, J.K. (2018). Quantifying uncertainty about Earth's resources. Eos (99). https://doi.org/10.1029/2018EO097471. 
28  Yin (undated). Automated uncertainty quantification of geological model using Bayesian Evidential Learning. SCERF. 

https://scerf.stanford.edu/automated-uncertainty-quantification-geological-model-using-bayesian-evidential-learning 
29  The approach cites Bayes and his notion of "prior uncertainty", which captures what we already know about the unknown 

before acquiring data. Thus, even before specific deposits are exploited, we already know a lot about the subsurface, since 
a geological depositional system has numerous analogies to other parts of the earth. The Bayesian approach requires a 
quantification of this geological ex-ante information. 

30  Sinking is the construction of vertical cavities such as shafts or cavities  for the extraction of deposits. 

 

https://scerf.stanford.edu/research
https://doi.org/10.1029/2018EO097471
https://scerf.stanford.edu/automated-uncertainty-quantification-geological-model-using-bayesian-evidential-learning


cepInput AI for a resilient supply of raw materials 9 

 

Geothermal Resources. Current SCERF corporate collaborations are looking at groundwater 

management in Denmark, production planning for a complex reservoir in Libya, appraisal of a West 

African deep-water turbidite reservoir using seismic data, remediation of uranium contamination in 

the US, predictive Big Data analytics for shale deposit optimisation, automated data prediction in 

mineral resource evaluation, and the use of BEL for gas reservoir management.31 As this list indicates, 

previous modelling of the ground topography has mainly taken place in the non-European area, most 

notably Antarctica, Canada, China, and the USA, as well as in the Gulf of Mexico. From a European 

perspective, it is therefore worth highlighting that the SCERF programme has also looked at 

geophysical data in the Danish aquifer system, in a research paper by Lijing Wang on quantifying 

uncertainty on the flow and transport of nitrate.32 In terms of content, this is essentially about the 

management of fertiliser residues rather than rare earths, but methodologically it is of interest that 

the analysis was also able to draw on high-quality data in this European context, including hydrological 

and geochemical information on nitrate distribution as well as so-called tTEM data. The tTEM system 

is an electromagnetic system designed for detailed, yet fast and cost-effective 3D geophysical and 

geological mapping of the shallow subsurface.33 

In addition to the cooperation between KoBold and Stanford University, there are a handful of other 

startups working in this area. EarthAI is an Australian start-up that also uses AI methods to find 

potential raw material deposits.34 The company describes itself as a "vertically integrated metals 

exploration company", specialising in those metal ore deposits needed to build renewable energy 

infrastructure. So far, it says it has tested 135 AI-generated targets in previously unexplored land and 

discovered 35 deposits. This amounts to a success rate of 26%; i.e. significantly higher than for the 

conventional process described above. After discovering relevant deposits, EarthAI enters into 

collaborations with developers to bring these deposits into production (unlike KoBold, which does the 

development itself, which increases the entrepreneurial risk). The projects are currently being run in 

Australia (Northern Territory and New South Wales) with a focus on battery metals (nickel, cobalt, 

vanadium, chromium), electronics metals (gold, silver, platinum, palladium), electricity metals (copper, 

zinc, lead, manganese) and generator metals (rare earths, tin, tungsten, molybdenum, tantalum, 

niobium). 

In order to expand European sovereignty in the area of critical minerals, further complementary 

initiatives are necessary that concern other parts of the value chain besides the exploration of existing 

deposits, but which can also benefit from machine learning methods. For example, scientists have 

recently found a new AI-driven way to facilitate the search for new rare earth compounds. Here, too, 

the algorithm examines a database of information (in this case relating to rare earth compounds) and 

recognises correlations that make it possible to find new potential compounds. Since it is impossible 

to theoretically or experimentally test all possible compounds, scientists have built an AI model that 

can quickly test hundreds of permutations and then evaluate the phase stability of each compound. In 

other words, the AI can judge whether or not a rare earth compound will come apart. If Europe wants 

to achieve strategic sovereignty in the field of critical metals and, at the same time, its ambitious goals 

 
31  SCERF (2023). Research. https://scerf.stanford.edu/research. 
32  Wang, L. (undated). Quantifying uncertainty on flow and transport of nitrate using geophysical data in the Danish aquifer 

system. SCERF. https://scerf.stanford.edu/quantifying-uncertainty-flow-and-transport-nitrate-using-geophysical-data-
danish-aquifer-system-0 

33  HydroGeophysics Group (undated). tTEM. https://hgg.au.dk/instruments/ttem 
34  See the company's profile at: https://earth-ai.com/ 

https://scerf.stanford.edu/research
https://scerf.stanford.edu/quantifying-uncertainty-flow-and-transport-nitrate-using-geophysical-data-danish-aquifer-system-0
https://scerf.stanford.edu/quantifying-uncertainty-flow-and-transport-nitrate-using-geophysical-data-danish-aquifer-system-0
https://hgg.au.dk/instruments/ttem
https://earth-ai.com/
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for an ecological transformation of the economy, such creative thinking and a comprehensive 

approach to promoting appropriate AI systems are urgently needed. 

3.3 Problems and limits 

Although this cepInput argues that the use of AI systems in exploration and surveillance, such as those 

currently being developed by companies like KoBold and EarthAI or researchers like those at Stanford 

University, could make a significant contribution to improving Europe's information base, it is essential 

to consider the potential technical problems and regulatory uncertainties of this technology, before 

deploying and promoting it in Europe. Unlike many other areas of AI application, which can draw on a 

treasure trove of relevant observations gathered over many years, drilling data for the areas where 

completely new deposits are to be discovered does not yet exist. The clustered nature of the data 

around known deposits is probably the biggest challenge for the application of AI-driven software in 

this field, as geologists do not usually have many positive examples with which to train an algorithm 

to recognise similar areas or minerals. Currently, therefore, the greatest potential for AI-driven 

exploration is to rely more on indirect measurements from geophysics and geochemistry and to 

extrapolate them or subject them to more detailed interpretation. It is no accident that one of the key 

arguments for KoBold's initial focus on Canada was the simple fact that the country has vast amounts 

of publicly available survey data, including detailed field reports, geochemical data from borehole 

samples, aerial magnetic and electromagnetic survey data, lidar measurements and collections of 

satellite imagery going back decades.35 The question is, therefore, whether there is similarly detailed 

data that is just as readily available for the European continent. To give an impression of the necessary 

granularity of the data: As mentioned above, AI systems for predicting critical minerals need data 

stored in a 3D space representing the cubic area in which targets are to be evaluated. The distance 

between the "blocks" in this 3D space should ideally correspond to the scale of a drilling target, i.e. 50 

to 200 metres.36 

The quality of existing data is relevant, not least in the context of emerging EU data regulation. 

Geological data is often very patchy in terms of both space and time. This patchiness, together with 

inconsistent data quality, can lead to AI systems detecting false signals or making incorrect predictions. 

For a clear understanding of the problem, it is necessary to briefly outline how supervised learning of 

AI systems works. At its core, supervised learning means that an AI system learns through examples. 

The model is given an input variable with a corresponding correct identifier or "label". During training, 

the model sees which label corresponds to the data and can thus find patterns between the data and 

these labels. Spam detection systems, whereby a model is trained to classify which emails are spam 

and which are not, are a typical example of such supervised learning. An analogous application of 

machine learning for targeted exploration in the mining sector would be the classification of ore and 

waste. Figure 1 illustrates the typical procedure whereby companies such as KoBold or EarthAI feed 

the relevant data into a machine learning algorithm to optimise the automatic classification of ore 

blocks and waste blocks in 3D space. The "true positives" identified in this process promise a high 

probability of success in the event of drilling. 

 
35  Stone, M. (2021). The big tech quest to find the metals needed for the energy overhaul. MIT Technology Review 

(11.08.2021). https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-
for-the-energy-overhaul/ 

36  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 
Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243, p. 4. 

https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-for-the-energy-overhaul/
https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-for-the-energy-overhaul/
https://www.researchgate.net/publication/323243243
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Figure 1: Illustration explaining possible AI predictions in mineral exploration 

 

Source: Desharnais et al. (2017).  

The problem now is that any imbalance in the number of positive and negative examples in the data 

set is highly problematic for machine learning - and potentially makes it error-prone, which can lead 

to an increased number of so-called "false negatives" and "false positives" (see Figure 1). In practice, 

this would correspond to an increased error rate during drilling. Regrettably, a review of existing data 

sets in the mining sector suggests that they do indeed contain an uneven distribution of positive and 

negative examples.37 The data is often heavily clustered around known deposits with few data points 

in areas that have yet to be explored. Drill data is the most reliable but very localised, while geophysical 

or geochemical surveys sometimes cover only a fraction of the terrain to be investigated. In some 

cases, there are no known deposits of certain minerals on the property in question, so no positive 

examples are available at all. In addition, there is a significant disparity within the different classes of 

data required for AI-driven exploration; in particular, the number and quality of geochemical data vary 

greatly. Using an AI system that has been trained on an apparently analogous project can therefore 

prove to be completely misleading: "Training an algorithm on data from Alaska and applying it to 

Nevada means it might have a lot of wrong assumptions," Sam Cantor, head of product at Minerva 

Intelligence, another AI-driven mining exploration startup, stated in an interview.38 

The question, therefore, is whether, in the future, it will be necessary to carry out special quality 

control of the training data of AI mining start-ups in the EU. This would be the case, in particular if such 

systems were developed and used not only for the quantification of geological resources but also for 

extracting the reserves. In the latter case, they could be considered "high-risk" under the EU AI Act 

currently under negotiation, meaning they would have to meet specific requirements regarding the 

design and quality of training datasets (these should be relevant, representative, error-free and 

complete). The proposal for the AI Act was presented by the European Commission on 21 April 2022 

and aims to regulate AI based on its potential for harm. The Commission is now waiting for the Council 

 
37  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 

Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243, p. 4. 
38  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 

https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/ 

https://www.researchgate.net/publication/323243243
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and the European Parliament to define their positions before the inter-institutional negotiations take 

place in 2023. 

A crucial part of this AI legislation is the question of which AI applications should be classified as high-

risk, as these will have to meet strict requirements. According to the current draft, a high-risk 

classification can be made in two ways.39 Firstly, an AI system may be contained in a product that falls 

under EU harmonisation rules, such as an AI-driven machine for mining. In this case, the text specifies 

that an AI system must be classified as high-risk if its failure or dysfunction could endanger a person’s 

health, safety or fundamental rights. The aforementioned dysfunction of AI classifications in the mining 

sector could result in damage to health or safety if, for example, unintended environmental damage 

results from a mining area identified by AI, which a human could have foreseen. Secondly, AI 

applications will be considered high-risk if they fall within the areas and types of use listed in Annex III 

of the draft. Although specific mining activities are not yet listed in Annex III, it does contain a category 

entitled Critical Infrastructure, which so far includes AI systems used as safety components in the 

management and operation of critical digital infrastructure, road transport and the supply of water, 

gas, heating and electricity. In addition, the Commission will presumably have the power to amend the 

list in Annex III by adding or deleting high-risk areas or specific types of use if the AI system "poses a 

serious risk of harm to health and safety or a risk of adverse impact on fundamental rights, the 

environment or democracy and the rule of law". For the same reasons as outlined above, mining 

companies that develop or use AI systems could be expressly included in the regulatory framework of 

the AI Act at a later stage, when they become more active on the European market. 

In this discussion, it is essential to differentiate between exploration and the extraction of raw 

materials. The algorithms described in section 3.2 are initially aiming to quantify geological resources, 

not reserves (i.e. that part of the resources that can be economically extracted). The decision to mine 

- and thus the responsibility for most of the potential environmental damage - would thus remain with 

the mining companies. In addition, the EU's proposed AI Regulation does not apply to AI systems, or 

their results, that are specifically developed or put into operation for the sole purpose of scientific 

research and development. Nevertheless, the example of KoBold described above shows that in the 

future there will be vertically integrated companies that translate the findings of their AI systems 

directly into the purchase and physical analysis of certain areas. In addition, it should be emphasised 

that AI systems are generally developed and distributed via complex value chains, which makes it 

difficult to precisely determine the legal responsibility of AI software developers towards its users 

within the meaning of the AI Act. The Commission's proposal is essentially based on a linear view of 

the AI value chain, whereby a company brings a particular AI system onto the market and, if the system 

is deemed to be high-risk, is made responsible for compliance with the Regulation.40 In this regard, 

reference should be made to the recent compromise text, which contains some amendments aimed 

at exploring the distribution of roles and responsibilities in the AI value chain.41 Even if the EU 

legislation is not applicable to pure quantification efforts, in all cases where the number and/or quality 

 
39  Bertuzzi, L. (2022). Leading MEPs exclude general-purpose AI from high-risk categories - for now. EURACTIV (12.12.2022). 
40  On this issue, see: Engler, A. & Renda, A. (2022). Reconciling the AI Value Chain with the EU's Artificial Intelligence Act. 

CEPS In-Depth Analysis, September 2022 - 03. https://www.ceps.eu/ceps-publications/reconciling-the-ai-value-chain-
with-the-eus-artificial-intelligence-act/ 

41  Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on artificial 
intelligence (Artificial Intelligence Act) and amending certain Union legislative acts - General approach. Brussels 
(25.11.2022) 25 November 2022 (OR. en), 14954/2. 
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of geological and physical data is not guaranteed, greater validation by experts should be secured in 

order to avoid erroneous conclusions which could have negative consequences.42 

Even if a sufficiently granular and high-quality set of training data for Europe, that is possibly compliant 

with the AI Regulation, can be generated and shared, the current technical application problems of AI-

driven systems still need to be taken into account. Exploration geologist Guy Desharnais, who has 

researched mining applications for machine learning and in principle advocates its usefulness, joins 

several colleagues in urging further basic research to ensure robust application of AI in the mining 

sector.43 According to his findings, further research is needed to identify the most robust and 

productive algorithms capable of predicting ore bodies. The input data as well as the "output" must 

also be carefully checked to ensure that the model does not simply predict what is already known or 

provide incorrect results. This, says Desharnais, will require high-quality geoscientific data, solid 

interpretations, common sense and, in most cases, several iterations to understand what exactly the 

AI is predicting.44 

This requirement is also in line with recent developments in the EU’s digital legislation. Already the 

Ethics Guidelines of the Commission on Trustworthy AI, published in 2019, have identified human 

agency and oversight as one of the core principles of ethical AI.45 This document introduces the 

concepts of "human in the loop" as the capability for human intervention and "human on the loop" for 

monitoring overall activity. As far as the AI Act is concerned, the current draft of Article 14 (1) requires 

that high-risk AI systems be designed and developed in such a way that they can be effectively 

overseen by natural persons during the period in which the AI system is in use, including with 

appropriate human-machine interface tools. Some critics argue that the AI Act so far fails to identify 

and regulate more precise mechanisms for effective human oversight.46 They call for greater clarity 

about when and where humans will have the final word in decision-making, or when mere human 

monitoring of the system is enough. Due to the imponderables that have been identified, this would 

also be desirable for the technology’s outlined areas of use in the mining sector. 

Since the target metals, once located, still need to be physically mined, which is environmentally 

damaging, an important task for any AI-driven exploration tool is also to minimise the environmental 

impact. According to KoBold, the company itself decides where prospecting takes place, and states 

that it will only work in areas where the mining of certain minerals is ethical and supported by the 

affected community.47 It is questionable whether interdependencies between the potential excavation 

 
42  This is also the demand of: Davies, S. (2020). Assessment of Methodologies to Predict Potential Mineral Endowment on 

Entering an Immature Exploration Space, using the Western Australian Sandstone Orogenic Gold District as a Natural 
Laboratory. Doctoral Thesis, The University of Western Australia. 

43  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 
Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243 

44  These statements refer to the interview Guy Desharnais gave to MIT Technology Review. See: Stone, M. (2021). The big 
tech quest to find the metals needed for the energy overhaul. MIT Technology Review (11.08.2021). 
https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-for-the-
energy-overhaul/ 

45  European Commission (2019). Ethics Guidelines for Trustworthy AI. https://ec.europa.eu/futurium/en/ai-alliance-
consultation.1.html. 

46  Domingo, S. (2022). Human intervention and human oversight in the GDPR and AI Act. Trilateral Research Ethical AI 
(31.05.2022). https://trilateralresearch.com/research-highlights/human-intervetion-in-gdpr-and-ai. 

47  Stone, M. (2021). The big tech quest to find the metals needed for the energy overhaul. MIT Technology Review 
(11.08.2021). https://www.technologyreview.com/2021/08/11/1031539/the-big-tech-quest-to-find-the-metals-needed-
for-the-energy-overhaul/ 
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site and other nearby metals, ethical legitimacy and local popularity of the measures, can be taken into 

account by an AI system. This is not the case, at least, for the AI exploration systems whose functioning 

is described in publicly available documents, because these consider each 3D block as a single entity, 

and there are no feedbacks to external metadata.48 In other words, each virtual block in the 3D system 

is analysed in isolation, without taking account of its spatial position within a larger image. Creating an 

AI system whereby potential trends in data could be correlated between neighbouring blocks would 

exponentially increase the mathematical problem to be solved and probably poses insurmountable 

problems for most start-ups in this field. Nevertheless, these considerations only apply to the 

consideration of spatial interdependencies. Social indicators regarding the ethical defensibility and 

acceptance, such as are already regularly collected in surveys across Europe, or could easily be 

collected, can presumably be integrated into the data set relatively easily as overarching external 

parameters; if only because they are necessarily more large-scale than the geological investigations. 

As explained lower down, when it comes to social and ecological sustainability, the algorithms 

promoted for the exploration of rare earths in Europe should not, therefore, be limited to just the 

primary deposits but should also evaluate information on the expected environmental effects of 

commercial exploitation. 

This underlines the ultimate need for a so-called "human in the loop" system for the mining sector, in 

line with the aforementioned Ethical Guidelines of the Commission for Trustworthy AI and the 

demands of most experts. In recent years, the term has become widely used in the field of AI, where 

it essentially refers to AI systems in which the combined effort of humans and machines helps to 

improve overall results and accelerate machine learning.49 In such systems, there is usually continuous 

interaction between the human supervisor and the AI to train a model and then continuously update 

it as soon as it is deployed. A good example is the AI system of the SGS Geostat team, which won the 

"Integra Gold Rush Challenge" in 2016. This innovation competition released historic data on the 

Sigma-Lamaque gold property in Val D'Or, Canada, and challenged the public to find innovative ways 

to identify relevant drill targets. The winning submission combined a traditional weight of evidence 

approach with machine learning and virtual reality target vetting.50 Only through this combination of 

qualitative and quantitative analysis and human validation did a concrete added value emerge while 

reducing unforeseen risks. Kobold had the same experience: Once the AI predictions had been made 

by the company's in-house computer scientists, it was necessary for staff with geological expertise to 

apply their intuition to sift out unlikely proposals and figure out how to drill a single hole to narrow 

down the remaining possibilities as much as possible to be even more cost-effective.51 

Finally, there are challenges in the area of education. Significantly, two-thirds of the KoBold team are 

data scientists or software engineers who have never worked in exploration; the other third are 

 
48  This relates to the model outlined in: Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: 

the Future of Exploration Targeting Using Machine Learning. Conference Paper October 2017. 
https://www.researchgate.net/publication/323243243, p. 5. 

49  Humans in the Loop (undated). What is a Human in the Loop? https://humansintheloop.org/what-is-a-human-in-the-
loop/. 

50  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 
Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243, p. 3. 

51  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 
https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/ 
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experienced miners.52 So if Europe wants to import this technology, technical expertise in AI, ideally 

coupled with some basic knowledge of earth sciences, is urgently needed. However, according to 

experts, there are very few courses, information platforms or vocational training programmes that 

comprehensively cover all aspects of decision-making under uncertainty in the mining industry.53 The 

problem lies in the multidisciplinary aspect, which requires knowledge of geosciences, data science, 

computer science and decision science. Empirically, this problem manifests itself in inconsistencies 

between expert estimates and data-driven estimates, as well as in inconsistencies between different 

groups of experts charged with assessing the presence of certain minerals.54 This can be explained by 

the use of different strategies as well as differences in background experience leading to varying 

uncertainty assessment skills. The authors of this comparison therefore suggest practical scenario-

based training programmes and careful team selection to maximise skill diversity as a way to improve 

assessments.55 

  

 
52  Beiser, V. (2022). These Algorithms Are Hunting for an EV Battery Mother Lode. WIRED (12.12.2022). 

https://www.wired.com/story/these-mining-algorithms-are-hunting-for-an-ev-battery-mother-lode/ 
53  Caers, J.K. (2018). Quantifying uncertainty about Earth's resources. Eos (99). https://doi.org/10.1029/2018EO097471 
54  Davies, S. (2020). Assessment of Methodologies to Predict Potential Mineral Endowment on Entering an Immature 

Exploration Space, using the Western Australian Sandstone Orogenic Gold District as a Natural Laboratory. Doctoral Thesis, 
The University of Western Australia. 

55  Davies, S. (2020). Assessment of Methodologies to Predict Potential Mineral Endowment on Entering an Immature 
Exploration Space, using the Western Australian Sandstone Orogenic Gold District as a Natural Laboratory. Doctoral Thesis, 
The University of Western Australia. 
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4 Promoting AI in the context of EU raw materials policy 

4.1 Consideration in the EU raw materials strategy 

The strategic importance of critical raw materials was first highlighted by the European Commission in 

2008 by way of a "Raw Materials Initiative".56 Even then, the Commission saw that expanding the 

knowledge base concerning deposits located in the EU was an essential step on the way to reducing 

supply uncertainties. To this end, a better exchange of information between the national geological 

institutes was called for. At that time, there was no talk of using artificial intelligence in exploration. 

The subsequent Communication "Commodity Markets and Raw Materials" in 2011 then presented the 

first list of critical raw materials.57 The existence of such critical raw materials led to the call for a 

harmonised European database on raw material deposits to be set up. The Commission's Report on 

Critical Raw Materials and the Circular Economy, published in 2018, recommends the same thing for 

recording secondary resources from waste along the supply chain.58 The 2020 Action Plan on Critical 

Raw Materials points to the significant potential of remote sensing offered by the European Earth 

Observation Programme Copernicus. These will be used to a greater extent in future, as part of the 

action plan, both for locating deposits and for the environmental monitoring of existing extraction 

regions.59 Even if the use of AI is not explicitly mentioned here, it is clear, according to experts, that 

the large volume and diversity of the data provided by Copernicus suggest an increasingly AI-based 

evaluation.60 In this context, it should be noted that new and improved ways to access Copernicus data 

have been available since the end of January 2023, making it easier for interested companies to obtain 

relevant geodata for training AI systems.61 

The Commission has announced the drafting of comprehensive legislation, for the end of March 2023, 

to improve the handling of critical raw materials. Initial details of the content emerged in autumn 2022 

as part of the associated consultation process. Thus, "improving the EU's monitoring, risk management 

and governance in the field of critical raw materials" will be one of four main pillars of the legislative 

proposal.62 In addition to mapping tools, early warning systems and stress tests for supply chains are 

mentioned as possible monitoring tools, i.e. domains whose complexity will most likely require the use 

of AI. The Commission's concept indicates that the contribution of AI to securing the supply of raw 

materials could therefore be of a more comprehensive nature and go beyond the mere exploration of 

deposits. The extent to which this will also be linked, under the legislative proposal, to rules or 

recommendations on the use of state funding instruments is unclear from the consultation documents.  

 
56  European Commission (2008). The raw materials initiative - meeting our critical needs for growth and jobs in Europe 

Communication from the Commission to the European Parliament and the Council. COM(2008) 699. 
57  European Commission (2011). Tackling the Challenges in Commodity Markets and on Raw Materials Communication from 

the Commission to the European Parliament and the Council. COM(2011) 25. 
58  European Commission (2018). Report on Critical Raw Materials and the Circular Economy.  
59  European Commission (2020). Critical Raw Materials Resilience: Charting a path towards greater security and 

sustainability. Communication from the Commissions to the European Parliament, the Council, the European Economic 
and Social Committee and the Committee of the Regions. COM(2020) 474. 

60  German Federal Government (2021). Copernicus: Neue Dimensionen. Nationales Forum für Fernerkundung und 
Copernicus 2021 - 23. bis 24. März 2021. Ergebnisbericht.  

61  EARSC (2023). EOcafe: The New Copernicus Data Access Service (06.01.2023). https://earsc.org/2023/01/06/eocafe-the-
new-copernicus-data-access-service/. 

62  European Commission (2022). European Critical Raw Materials Act - Call for evidence for an impact assessment. Ref. 
Ares(2022)7155798.  
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4.2 Justifying eligibility for funding 

From an investor's perspective, the decision to explore new resource deposits - just like the mining of 

existing deposits - must be subject to a dynamic optimisation calculus. Exploration activities give rise 

to costs in the present; the return on these costs can only be expected in the future in the form of a 

larger reserve of mineable resources. This return is subject to uncertainty at the time of the decision 

and must therefore be significantly marked down. The uncertainty relates not only to the question of 

finding resources but also to their economic viability. In addition, there are also regulatory risks in 

many cases, i.e. uncertainty as to whether commercial mining of new deposits will be permitted in the 

long term and, if so, under what conditions. Compared to alternative investments, therefore, the 

expected return from exploration projects will typically have to factor in high risk premiums. Taking 

AI-generated indicators into account in decision-making can help to reduce uncertainties or at least 

make existing risks more transparent. From an investor's perspective, AI can thus help to reduce capital 

costs and make exploration projects more attractive. 

Nevertheless, a political push is needed to set up suitable service markets in Europe. This is due to two 

peculiarities: the existence of information externalities in the exploration sector63, and economies of 

scale in the market for AI service providers. Exploratory activities always give rise to new knowledge, 

even if unsuccessful. Obligations to disclose data collected during exploration (as in Australia, for 

example64), give rise to an immediate information gain for the public domain, and thus also for 

potential competitors. And even without mandatory disclosure, conclusions can be drawn from 

observing whether or not projects are continued. Investors themselves see no benefit in this positive 

information externality, which, in the worst case, may even result in reluctance to invest. From 

society's point of view, this means that even if the existing risks are correctly assessed, there is a 

tendency to invest too little in exploration activities. In principle, this speaks in favour of publicly 

funded financial support for exploration projects.  

In the case of AI-based exploration, the economic characteristics of algorithms provide an additional 

justification. Economies of scale exist here in both static and dynamic forms. On the one hand, the 

fixed costs of algorithm development and verification dominate the cost structure compared to the 

variable costs of selling algorithm-based products. The costs to be covered per customer are thus likely 

to be relatively high when entering the market and to fall continuously as the customer base grows. 

This effect is reinforced by the dynamic economies of scale: A growing customer base means there is 

more data to optimise the algorithms, further improving the quality of the AI service.65 Not only could 

State support accelerate this process, but in the case of Europe, it could also help prevent the long-

term emergence of non-European monopolies in this segment, thus contributing to the overarching 

geopolitical goal of reduced dependence and increased European sovereignty, including in the raw 

materials sector. 

Both effects also reinforce one another. In addition to data provided by the customer, information 

externalities from external projects may also contribute to the optimisation of the algorithms. 

 
63  Fogarty, J.J., & Sagerer, S. (2016). Exploration externalities and government subsidies: The return to government. 

Resources Policy (47), pp. 78-86. 
64  Australia Minerals (2022). Legislation, regulations and guidelines. https://www.australiaminerals.gov.au/legislation-

regulations-and-guidelines#exp. 
65  Varian, H. (2018). Artificial intelligence, economics, and industrial organisation. In: The economics of artificial intelligence: 

an agenda. Chicago, US: University of Chicago Press, pp. 399-419. 

https://www.australiaminerals.gov.au/legislation-regulations-and-guidelines%23exp
https://www.australiaminerals.gov.au/legislation-regulations-and-guidelines%23exp


18 cepInput AI for a resilient supply of raw materials 

 

Conversely, the widespread use of specialised AI will enable more efficient use of publicly available 

information. These potentials can be used for both entrepreneurial and regulatory purposes. In the 

future, for example, AI could potentially be used in public approval procedures for the award of 

exploration and mining licences. AI could thus help to reduce administrative costs and the length of 

approval procedures, one of the most significant bottleneck factors in project development.  

5 Recommendations for EU action 

Following pandemic-related uncertainty at the start of 2020, which stalled field activity in the mining 

sector, drilling picked up again as of September 2020, leading to full-year results of 41,026 wells drilled 

on 1,098 projects. Both figures increased considerably in 2021: 68,982 wells were registered with 1,611 

projects, representing an increase on the previous year of 68% and 47%, respectively.66 This trend has 

not yet reached Europe, however. Based on our research into examples of current applications in the 

field of AI-driven discovery and extraction of critical minerals; and based on the preceding discussion 

of eligibility for funding and the potential technical and regulatory uncertainties, we recommend the 

following supporting measures at the European level.  

1. Requirements for better access to reliable geodata 

There is a need for better, simpler and cheaper ways to access high-quality public geodata. It is worth 

using sufficient resources to quickly push ahead with the necessary digitalisation process because the 

data that is generated, and the AI systems that are developed based on that data, will have implications 

far beyond the extraction of rare metals and may also galvanise other areas of application that use 

geological or ecological map data. The experience of the US defence agency DARPA, and the companies 

MITRE and NASA Jet Propulsion Laboratory, show that the most significant potential for a short-term 

solution to acute data needs is to improve geo-referencing and the extraction of individual geological 

features on existing digitised or scanned maps.67 Targeted financial support, innovation challenges (see 

below) and regulatory frameworks for the acquisition, exchange and use of relevant data should 

therefore be aimed primarily at this point in the AI “workflow”. 

On the latter point, necessary regulatory steps have already been taken or are currently in the process 

of becoming law: At the European level, the INSPIRE Directive 2007/2/EC already stipulates that 

Member States must provide certain geodata sets. The Data Governance Act, applicable from 24 

September 2023, will regulate access to protected public sector data and facilitate the sharing of data 

within the EU, for example, through data brokering services, data cooperatives and "data altruism" 

organisations.68 However, as the EU Regulation only encourages (rather than obliges) public authorities 

to provide data, success depends mainly on their willingness to do so voluntarily.69 Last but not least, 

there is the Data Act, which aims to ensure that the value creation derived from data is distributed 

more fairly among the actors in the data economy, and to that end formulates data sharing obligations 

for data owners (usually manufacturers of Internet of Things products and providers of connected 

services).70 However, in view of the very varied challenges regarding the exchange of data, illustrated 

 
66  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 17. 
67  See the report at: DARPA (2022). DARPA Announces Winners of AI for Critical Mineral Assessment Competition 

(16.12.2022). https://www.darpa.mil/news-events/2022-12-16 
68  Regulation (EU) 2022/868 of the European Parliament and of the Council of 30 May 2022 on European data governance 

and amending Regulation (EU) 2018/1724 (Data Governance Act), OJ L 152, 3.6.2022, p. 1-44. 
69  Eckhardt, P. & Anzini, M. (2021). cepPolicyBrief on COM2020_767. cepPolicyBrief 6/2021. 
70  Proposal for a Regulation of the European Parliament and of the Council on harmonised rules on fair access to and use of 

data (Data Act). COM/2022/68 final. 
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here by the example of mining, specific data-sharing obligations adapted to the particular features of 

the respective sector would be more effective, which tends to argue in favour of a more nuanced, 

sector-specific regulatory approach.71 The scope of the Data Act also needs to be clarified. Finally, the 

EU is currently planning twelve common European data rooms in strategic sectors and areas of public 

interest. They are intended to enable more intensive sharing and reuse of data. 

The Commission also published a list of so-called "high-value datasets" on 20 January 2023, which 

public bodies must make available for re-use free of charge within 16 months.72 The data sets must be 

made available in machine-readable format via a programming interface, which is why they can be 

used easily and quickly as training data for machine learning applications - such as those already being 

developed by the start-ups described above. The Regulation is based on the Open Data Directive, which 

defines six categories of high-value data sets: geospatial, earth observation and environment, 

meteorological, statistics, companies and mobility. Of particular relevance for mining start-ups will be 

the earth observation and environment category, which includes space-based, remote sensing, 

ground-based and in-situ data, as well as environmental and climate datasets that fall within the 

INSPIRE data themes under Directive 2007/2/EC.73 The latter heading includes data themes such as 

hydrography, geology, biogeographical regions, land use, mineral resources and soils – precisely the 

kind of data that start-ups like KoBold are already successfully analysing outside Europe. In addition, it 

should be noted that the Regulation allows this range of themes to be expanded at a later date. This 

should allow even greater account to be taken of technological and economic developments in the 

mining start-up sector in the future. In addition, there should be insistence on rapid implementation 

of the Regulation: If possible, the data needed for rare metal exploration should be made available 

sooner than the 16 months specified in order to support the Commission's current cleantech initiative, 

even if this may only be possible for certain regions of Europe. Finally, domain experts should check 

whether the data provided is actually granular enough to enable AI activities by mining start-ups. 

2. Promotion of AI-supported raw material exploration 

More financial support is needed for European start-ups in this niche sector because previous 

investments and support programmes have focused mainly on non-European regions and companies. 

Prices for most commodities continued their upward trend in 2021, which was rewarded accordingly 

by the capital markets: Financing by junior and intermediate companies increased to $21.55 billion in 

2021, almost double the amount disbursed in 2020.74 However, almost two-thirds of the increase came 

from companies in Australia and Canada, whose total budget increased by $556 million compared to 

2020.75 Europe urgently needs to catch up here. The argument in favour of supporting exploration 

activities does not yet include a call to embark on mining in Europe because, due to the resulting 

(positive) information externalities, exploration can still offer added social value, even if one concludes 

that starting to mine would have predominantly (negative) environmental effects. Accordingly, it must 

be emphasised that our argument for funding eligibility refers to the use of AI in exploration, which is 

not to say that AI in mining is not useful, but the funding eligibility of a European metal mining industry 

is a more fundamental question that is beyond the scope and scale of this cepInput. 

 
71  Eckhardt, P. & Hoffmann, A. (2022). cepPolicyBrief on COM(2022) 68. cepPolicyBrief 11/2022. 
72  Commission defines high-value datasets to be made available for re-use. https://digital-

strategy.ec.europa.eu/en/news/commission-defines-high-value-datasets-be-made-available-re-use. 
73  Commission Implementing Regulation (EU) 2023/138 of 21 December 2022 laying down specific high-value data sets and 

the arrangements for their publication and re-use, OJ L 19, 20.1.2023, p. 43-75. 
74  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 5. 
75  S&P Global Market Intelligence (2022). World Exploration Trends. PDAC Special Edition April 2022, p. 12. 
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3. Organising innovation competitions for deploying AI in the mining sector 

The interaction between research and the application of AI in the mining sector can be improved 

enormously by way of targeted innovation competitions, even with small financial incentives. Given 

the current urgency to increase and further secure the supply of critical minerals, the US defence 

agency, DARPA, together with the US Geological Survey (USGS), launched the AI for Critical Mineral 

Assessment Competition in August 2022.76 The partnership will help the USGS to conduct assessments 

for more than 50 critical mineral resources to improve economic planning and land-use decision-

making. The competition aimed to gather ideas to drastically speed up at least parts of the assessment 

process by using AI to automate critical processes. A total of 18 teams from industry, academia and 

even a high school student competed for cash prizes in the low five-figure range. Holding a similar 

competition in Europe could help the Commission and specialised mining companies to automate key 

steps in the evaluation of geological maps of mineral deposits crucial to the European economy and 

security. 

4. Establishing technical standards and transparency rules for the use of AI in the mining 

sector 

Avoiding errors or inconsistencies in the underlying data is crucial in preventing false results or 

undesirable side effects. Experts in the mining sector point out that even simple inconsistencies such 

as differences in the units – for example, g/tonne versus ounce/tonne – occur and have a detrimental 

effect on AI forecasts.77 This can be counteracted by uniform standards and minimum quality 

requirements for the data sets to be used. A good example is the guidelines and standards for 

collecting, processing and inversion of tTEM data recently developed by the Danish Environmental 

Protection Agency and the Institute of Geosciences at Aarhus University.78 In addition, it is necessary 

to ensure that interdependency effects - especially the critical environmental aspects - are always 

taken into account, even in AI-driven processes ("human in the loop"). In order to meet the high-quality 

standards set by the future European data legislation, existing AI solutions need to be further 

evaluated and developed to become operational in the European context. In particular, neural 

networks, which have already proven extremely promising in many other industries, are usually 

entirely opaque and offer no way to understand the logic behind the conclusions reached. This could 

be problematic, for example, in the context of the EU's AI Act, mentioned above, which aims to make 

AI systems more transparent. Article 13 of the current draft states: "High-risk AI systems shall be 

designed and developed in such a way to ensure that their operation is sufficiently transparent to 

enable users to interpret the system's output and use it appropriately." However, as critics have 

pointed out, it does not sufficiently specify what it means for users of an AI system to interpret its 

results, nor does it indicate the technical measures that a provider must take to demonstrate the 

compliance of its system.79 To counteract this legal uncertainty and to increase the confidence of the 

population and decision-makers in AI-driven exploration, the use of other more transparent methods, 

 
76  DARPA (2022). DARPA Announces Winners of AI for Critical Mineral Assessment Competition (16.12.2022). 
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77  Desharnais, G., Paiement, J.P., Hatfield, D. & Poupart, N. (2017). Mining BIG Data: the Future of Exploration Targeting 

Using Machine Learning. Conference Paper October 2017. https://www.researchgate.net/publication/323243243, p. 4. 
78  HydroGeophysics Group (2020). Guideline and standards for tTEM data collection, processing, and inversion. Version 1.1 

- November 2020. https://hgg.au.dk/fileadmin/HGGfiles/Reports/Guide_tTEM.pdf. 
79  Grady, P. (2022). The EU Should Clarify the Distinction Between Explainability and Interpretability in the AI Act. Centre for 

Data Innovation (31.08.2022). https://datainnovation.org/2022/08/the-eu-should-clarify-the-distinction-between-
explainability-and-interpretability-in-the-ai-act/. 
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alongside a pure AI approach, is recommended, which would provide qualitative information on the 

relative weighting of different factors, referred to as "grey-box methods".80 

Finally, standards will also be crucial if AI-driven process optimisation in existing mining areas takes 

place at a later date. As the aforementioned research by David Zhen Yin at SCERF shows, there have 

been significant automation gains in the field of well drilling that could generate economic efficiencies 

as well as reduce risks to the environment. Unlike the funding of exploration activities, the aim here is 

not to create positive externalities but to avoid already quantifiable negative externalities. This 

supports the use of binding standards as a control instrument. 

5. Creation of coordinated training and further education options 

Targeted training and further education options in the geosciences should be created and promoted. 

A review of the literature from experts in the sector showed that, in particular, information 

opportunities and training opportunities that comprehensively cover aspects of decision-making under 

uncertainty in the extractive industries, as well as practical scenario-based training programmes and 

careful team building, will facilitate direct and rapid improvements. Targeted funding and further 

training is therefore also necessary in the human capital sector in Europe. This is especially true since 

a recently published analysis of around 900 AI doctoral students in Germany showed that the EU only 

plays a subordinate role in this regard: The main countries of origin of these researchers are China, 

India and Iran; in addition, once doctorates have been completed, Europe loses a considerable 

proportion of its AI expertise to the USA, where talent is hired primarily by the well-known big tech 

companies.81 

6 Conclusion 

As the world shifts from fossil fuels to greener alternatives, it is becoming increasingly difficult to find 

the vast quantities of cobalt, lithium and other rare metals needed to build mobile phones, laptops 

and electric cars. Recently, the first start-ups have emerged that are capable of automating the search 

for potential mineral deposits with the help of AI, and thus make it more cost-efficient and faster. At 

the same time, this is a promising approach to identifying deposits eligible for funding, inside and 

outside the EU, if it is ensured that the underlying systems are trained on high quality data and that 

environmental aspects and interdependencies of the potential extraction sites are taken into account 

by "humans in the loop". However, the importance of information externalities in raw material 

discovery, the existence of economies of scale in algorithm development and the lack of technical 

standards make intensive regulatory support necessary for market development. The forthcoming EU 

legislation on critical raw materials should address this issue. 

This cepInput argues in favour of a targeted EU funding policy in the field of AI-based exploration 

methods for rare commodities. It began by asserting that the technical possibilities for using modern 

AI in this area have also increased significantly in recent years. It uses several examples of non-

European companies to demonstrate that these techniques are also viable for the raw material sector. 

At the same time, the analysis shows that the necessary regulatory conditions must first be created for 

successful take-up of AI in mining. On a practical level, this firstly involves ensuring that there is 
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adequate human decision-making capacity within such automated systems. The evaluation of raw 

material deposits should never be limited to purely geological or economic parameters but should 

always include the social and ecological dimension. This makes algorithm development and the 

evaluation of algorithmic results particularly complex. Ensuring that there are "humans in the loop" 

increases the reliability of the analyses and at the same time guarantees that ethical standards are 

maintained. Secondly, state support will be necessary in the initial phase of market development in 

order to realise the economies of scale more quickly and to prevent the emergence of new monopolies 

in this sector from outside Europe.  

Against this background, the cepInput makes five concrete recommendations to the EU for action. It 

should use provisions under data law to ensure that reliable and granular geodata are sufficiently 

accessible to the public. It should financially support promising AI start-ups in this field, during the 

initial phase, in addition to driving European innovation in this field such as using innovation 

competitions. Furthermore, the EU should set technical standards and transparency rules for using AI 

in the mining sector to reduce legal uncertainty and build trust in these technologies. Finally, it should 

launch targeted education and training programmes at the interface between AI and geosciences.  

This article has focused on identifying existing resources by using new AI methods. Of course, this 

technology can also be used in many other ecological contexts. For example, a group of environmental 

scientists recently used AI to create a plan to end the dispute between Egypt, Ethiopia and Sudan over 

Africa's largest hydropower dam.82 The countries had been trying unsuccessfully, since the start of 

construction in 2011, to agree on parameters such as the speed of project completion and the amount 

of water to be released. Using AI and climate models, the researchers were able to identify a scenario 

that balances transboundary economic and biophysical interests, maximises economic benefits and 

allows for the impact of climate change. This research illustrates how AI can map geological and socio-

economic uncertainties more effectively, not least those arising from climate change, and create 

much-needed win-win solutions in sustainability management. 

At the same time, AI-based exploration is only a first step towards strengthening Europe's security of 

supply in the area of critical raw materials. The resources identified must also be harnessed without 

jeopardising sustainability goals and Europe's economic performance. This will require various other 

measures with a view to the circular economy, administrative processes and resource diplomacy. AI 

can also be helpful in this regard, such as in identifying and categorising the raw material resources 

lying dormant in consumer products. Some of the necessary regulatory instruments will also be the 

subject of forthcoming EU legislation concerning critical raw materials, which cep will continue to 

follow closely. In this respect, it is essential that we take a first important step towards a future-proof 

supply of raw materials in Europe – which includes recognising and promoting the potential of AI as a 

digital divining rod. 

  

 
82  Basheer, M., Nechifor, V., Calzadilla, A. et al. (2023). Cooperative adaptive management of the Nile River with climate and 

socio-economic uncertainties. Nat. Clim. Chang. (13), S. 48–57. 
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